1、脊椎动物最早起源于哪里?
浅海科学家对比研究了一些原始鱼类,比如鲨鱼和七鳃鳗(Petromyzon marinus),以及它们的无脊椎近亲——海鞘等的基因组。此外,通过重塑人类和小鼠共有miRNA的获得历史,研究人员确定:脊椎动物miRNA革新率最高的时期发生在七鳃鳗等无颚鱼(jawless fish)和鲨鱼等有颚鱼彼此分化之前,但在脊椎动物从无脊椎脊索动物近亲(比如海鞘)中分化出来之后。
2、脊椎动物起源于?
科学家对比研究了一些原始鱼类,比如鲨鱼和七鳃鳗(Petromyzon
marinus),以及它们的无脊椎近亲――海鞘等的基因组。此外,通过重塑人类和小鼠共有miRNA的获得历史,研究人员确定:脊椎动物miRNA革新率最高的时期发生在七鳃鳗等无颚鱼(jawless
fish)和鲨鱼等有颚鱼彼此分化之前,但在脊椎动物从无脊椎脊索动物近亲(比如海鞘)中分化出来之后。
Donoghue补充道,“这些新基因中大部分都是脊椎动物特有器官生长所必需的,比如肝脏、胰腺和大脑。正因如此,脊椎动物的起源和这些基因的起源在时间上是不一致的。”
3、陆生脊椎动物的肺起源于哪个胚层
外胚层。解来析:爬行类的自动物受精后不久,受精卵便开始进行卵裂(即有丝分裂),卵裂进行到一定时期,就形成了一个内部有腔的球状胚,这叫囊胚,里面的腔叫囊胚腔。囊胚细胞按照一定的次序运动,形成三胚层动物,三胚层继续发育,外胚层发育。
A、爬行动物具有较为发达的肺,适于呼吸空气中的氧气,适于陆生;而蝗虫用气管呼吸也适应陆生环境.因此用肺呼吸,而且肺泡数目多,不是爬行动物是真正的陆生脊椎动物的主要原因.故此选项不正确;
B、爬行动物雌雄异体,体内受精,卵生,卵外有坚韧的卵壳保护,因此爬动物的生殖发育完全摆脱了对水的依赖.所以爬行动物才能成为真正的陆生脊椎动物.故此选项正确;
C、爬行动物的动、静脉血混合程度小,提高了血液循环输送氧气的能力,与适应陆地生活没有直接关系,故此选项不正确;
D、爬行动物皮肤有角质的鳞片,可以减少水分的蒸发适于干燥的陆生环境;但不是适于陆生的主要原因.故此选项不正确.
故选B
4、无脊椎动物起源于什么?
无脊椎动物
【基本介绍】
无脊椎动物(Invertebrata) 是背侧没有脊柱的动物,其种类数占动7a686964616f31333236373738物总种类数的95%。它们是动物的原始形式。动物界中除原生动物界和脊椎动物亚门以外全部门类的通称。BBC主持人大卫·阿登堡爵士(Sir David Attenborough)所言:“如果一夜之间所有的脊椎动物从地球上消失了,世界仍会安然无恙,但如果消失的是无脊椎动物,整个陆地生态系统就会崩溃。”
【分类情况】
·分类依据
①无脊椎动物的神经系统呈索状,位于消化管的腹面;而脊椎动物为管状,位于消化管的背面。
②无脊椎动物的心脏位于消化管的背面;脊椎动物的位于消化管的腹面。
③无脊椎动物无骨骼或仅有外骨骼,无真正的内骨骼和脊椎骨;脊椎动物有内骨骼和脊椎骨。
1822年J.-B.de拉马克将动物界分为脊椎动物和无脊椎动物两大类。1877年德国学者E.海克尔将柱头虫、海鞘、文昌鱼等动物与脊椎动物合称脊索动物门,与无脊椎动物的各门并列,把脊椎动物在分类系统中降为脊索动物门中的一个亚门,与半索动物亚门(柱头虫),尾索动物亚门(海鞘)和头索动物亚门(文昌鱼)并列。70年代以来半索动物已独立成门,由于后3个类群属于无脊椎动物范畴,这样无脊椎动物实际上包括了除脊椎动物亚门以外所有的动物门类,是动物学中的一个一般名称,而不是正式的分类阶元。
·种类划分
无脊椎动物的种类非常厐杂,现存约100余万种(脊椎动物约5万种),已绝灭的种则更多。它包括的门数因动物学的发展而不断增加。由于对动物的各个方面研究得愈加详尽,人们对其彼此间亲缘关系的认识也愈加深入,因而各门的分类地位常有更动。
无脊椎动物中的门
现在一般把动物界分为十门
包括 原生动物门 多孔动物门 腔肠动物门 扁形动物门 线形动物门 环节动物门 软体动物门 节肢动物门 棘皮动物门 脊索动物门有: 尾索,头索,脊索,脊椎动物四个亚门.除脊椎动物亚门外其它的便都是无脊椎动物
【形态特征】
无脊椎动物多数体小,但软体动物门头足纲大王乌贼属的动物体长可达 18米,腕长11米,体重约 30吨。无脊椎动物多数水生,大部分海产,如有孔虫、放射虫、钵水母、珊瑚虫、乌贼及棘皮动物等,全部为海产,部分种类生活于淡水,如水螅、一些螺类、蚌类及淡水虾蟹等。蜗牛、鼠妇等则生活于潮湿的陆地。而蜘蛛、多足类、昆虫则绝大多数是陆生动物。无脊椎动物大多自由生活。在水生的种类中,体小的营浮游生活;身体具外壳的或在水底爬行(如虾、蟹),或埋栖于水底泥沙中(如沙蚕蛤类),或固着在水中外物上(如藤壶、牡蛎等)。无脊椎动物也有不少寄生的种类,寄生于其他动物、植物体表或体内(如寄生原虫、吸虫、绦虫、棘头虫等)。有些种类如蚓蛔虫和猪蛔虫等可给人音带来危害。
【身体结构】
【运动系统】
运动系统包括身体支撑和前进两部分。
·骨骼
无脊椎动物没有脊椎动物那一根背侧起支撑作用的脊柱和狭义的骨骼。广义的骨骼包括外骨骼,内骨骼和水骨骼三种。而无脊椎动物拥有的正是这三种骨骼。
外骨骼指的是甲壳等坚硬组织,如蜗牛的壳,螃蟹的外壳,昆虫的角质层都属于外骨骼。
内骨骼存在于脊椎动物,半脊椎动物,棘皮动物和多孔动物中,在内起支撑作用。多孔动物的内骨骼并不是中胚层起源的。棘皮动物的内骨骼是由CaCO3和蛋白质组成的,这些化学物晶体按同一方向排列。
水骨骼是动物体内受微压的液体(无体腔动物的扁形动物也不例外!)和与之拮抗的肌肉,加上表皮及其附属的角质层的总称。无脊椎动物的主要骨骼形式。除了上述的软体动物,棘皮动物和节肢动物外的其他无脊椎动物都拥有水骨骼。
·运动
无脊椎动物的运动方式有多种:
• 借助纤毛的摆动前进
• 没有刚毛,没有环形肌的线形动物通过两侧纵肌的交替收缩实现的蛇行
• 有刚毛有环形肌有纵肌的蚯蚓的蠕动。这是通过不同节段纵,环肌肉交替收缩实现的
• 在海底沉积物中,通过膨胀身体某节段实现固定,身体的另外部分收细前钻的星虫
• 有爪动物的爬行
• 昆虫的飞行
【排泄系统】
并不是所有的无脊椎动物都有排泄器官的。例如扁形动物,它们靠的是位于下表皮向内伸出的表皮突起的排泄细胞完成排泄的。而无脊椎动物常见的排泄器官则是原肾管和后肾管。
【神经系统】
无脊椎动物的神经系统没有脊椎动物那么复杂多样。从最原始的神经细胞,到神经细胞集合成为神经节,到后来大脑的形成。其形式由弥散的神经网到有序的神经链,到中枢和梯状神经系统的出现,也经历了一个由简单到复杂的过程。
感觉器官由刺胞动物的感觉棍(有视觉和重力觉),经过扁形动物头部神经细胞群集形成的“眼”,到昆虫的复眼和头足动物,例如乌贼的眼(是由外胚层形成的!),分辨率不断上升。这更有利于动物逃避敌害和捕食。
【消化系统】
刺胞动物是桶形的,口和肛门是同一个开口。其消化系统被称为胃管系统(Gastrovaskularsystem),它和扁形动物分支的肠一样,行使消化和运输功能,因为它们没有循环系统。
内寄生的线形动物厂已经退化,它们靠头节吸取宿主小肠内的营养。
而大部分的真后生动物动物都有贯穿身体全长的消化管道,以及与之配合的消化腺和循环系统,行细胞外消化。消化管道通常由:口,咽,食道(有如蚯蚓者,它还有膨大的嗉囊),(肌肉)胃,肠和肛门。而双壳纲动物甚至用鳃过滤食物。
【循环系统】
无脊椎动物不一定有循环系统,例如上述的刺胞动物,扁形动物,缓步动物和线形动物。而有循环系统的动物,又有如软体动物的开放式循环系统(头足动物的循环系统有向闭合式的趋向)和环节动物的闭合循环系统。在昆虫和蜘蛛等动物身体里有的是血淋巴。
循环系统的任务是运输。它将呼吸系统里的氧气和消化系统的营养物质运输到身体的其他地方,而将代谢废物运输到排泄器官。
【呼吸器官】
无脊椎动物和其他生物一样,需要氧化能源物质获得能量,这个过程需要呼吸系统提供氧气。无脊椎动物最常见的呼吸器官是鳃。但昆虫的呼吸器官却是气管,它们开口于体表的可关闭的气门(Stigmen),往体内不断细分,不经过循环系统直接将氧气运输到细胞的线粒体旁边,非常有效的一套呼吸系统。
【生殖情况】
无脊椎动物的繁殖形式多样。首先分为有性跟无性两种。有些动物,如刺胞动物和寄生虫线形动物,有世代交替现象。如果动物是雌雄同体,还会出现自体交配现象。
无性生殖常见的形式是出芽生殖。见于刺胞动物的无性世代。
有性生殖的特点是,生殖通过生殖细胞的结合完成。而生殖过程可以是由一者单独完成,但更常见是两个个体通过各自提供不同的交配类型的生殖细胞去共同完成。前者见于猪肉绦虫,它后部性成熟的体节会受精于后一节体节。蚯蚓也会偶尔看到自身交配现象。
两个个体交配时,双方通常分别是雌雄异体的一方,(蚯蚓,蜗牛虽是雌雄同体,但它们的交配时却只扮演一种性别角色)。无脊椎动物的交配形式可谓千奇百怪。蚯蚓交配双方利用生殖带(Clitellum)分泌的液体粘在一起。一方的生殖带正对另一方生殖孔。一方的精子从雄性生殖孔排出,顺着自身体表的自己精子沟到达对方精子袋(Receptaculum seminis)中被储存,等待与对方的卵子受精。
雄性蝎子有一个特殊的生殖器官,叫精囊(Spermatophore),内藏精子。它通过分泌物将精囊粘着在地上。雄蝎子与雌蝎子跳求爱舞,先用尾部扫动地面,引起雌蝎子注意。然后两者双螯相抵,互相牵拉。雄蝎子会用毒针蜇一下雌蝎子,并释放少量毒素,以麻痹迷魂雌蝎子。然后雄蝎子播下精囊,牵拉雌性蝎子,使之腹部的生殖部位与精囊开口接触,获得精子。雌性在交配过程中会尝试吃掉雄性蝎子。
而雄马陆将精囊放置在高处,然后离开。雌马陆后来会发现精囊并取走,然后发生受精过程。
环节动物的多毛纲,会使用裂殖生殖(Schizogamie),即是脱离含有生殖细胞的身体部分,使之在水中完成受精。蜗牛身上有含CaCO3的 “爱情之箭”。交配双方通过数次前戏,就是互相磨蹭(中途会因疲倦而休息),双方达到兴奋状态。然后向对方射出“爱情之箭”,达到高潮,交换生殖细胞。
世代交替,以钵水母为例,水母(Mesa)会通过精卵融合的有性生殖方式,生育出水螅(Polyp)。水螅然后经过无性生殖,即旁支出芽分裂,经过叠生体和蝶状幼体阶段再次成为水母。
【发展历史】
地球上无脊椎动物的出现至少早于脊椎动物1亿年。大多数无脊椎动物化石见于古生代寒武纪,当时巳有节肢动物的三叶虫及腕足动物。随后发展了古头足类及古棘皮动物的种类。到古生代末期,古老类型的生物大规模绝灭。中生代还存在软体动物的古老类型(如菊石),到末期即逐渐绝灭,软体动物现代属、种大量出现。到新生代演化成现代类型众多的无脊椎动物,而在古生代盛极一时的腕足动物至今只残存少数代表(如海豆芽)。
【笔石介绍】
无脊椎动物笔石是奥陶纪最奇异而特殊的类群,自早奥陶世开始,即已兴盛繁育,广泛分布,有的固着,有的匍匐,有的游移,有的漂浮。奥陶纪的笔石主要是正笔石目的科属,如对笔石(DIDYMOGRAPTUS)、叶笔石(PHYLLOGRAPTUS)、四笔石(TETRAGRAPTUS)、栅笔石(CLIMACOGRPTUS)等。
【相关学科】
动物学的一个分支学科。在动物分类中,根据动物身体中有没有脊椎骨而分成脊椎动物和无脊椎动物两大类。研究无脊椎动物的分类、形态、生理特点、地理分布、繁殖、进化等的科学,叫无脊椎动物学。无脊椎动物学中包括:原生动物学、蠕虫学、昆虫学、软体动物学、甲壳动物学等。
【体温问题】
因为无脊椎动物体内没有调温系统,随外界温度的变化,代谢速度也发生变化。直到高等的软骨鱼类,如鲨鱼出现调温机制,为温血动物。真正意义上的恒温动物应该从鸟类开始。
5、陆生脊椎动物的肺起源于哪个胚层?各胚层都发育成什么?怎么区分?
在三个胚层中,中胚层发育成的结构比较多。我们在记忆时只要记住外胚层和内胚层发育成的结构,余下的全部为中胚层发育成的结构。
口诀:外表感神腺,内呼消肝胰,其余为中胚层。
1.外胚层口诀:外(外胚层)表(表皮及其附属结构)感(感觉器官)神(神经系统)腺(特指皮肤的附属结构如汗腺、皮脂腺及唾液腺等)。
具体解释:
外胚层由动物极细胞形成。皮肤的表皮极其附属结构、神经系统和感觉器官由其发育而来。皮肤的表皮,表皮的延伸部分,如口腔黏膜、鼻黏膜等是由外胚层发育而来的。皮肤的附属结构是指汗腺、皮脂腺及唾液腺等。神经系统包括脑、脊髓和它们发出的脑神经等,感觉器官主要是指眼、耳等。
2.内胚层口诀:内(内胚层)呼(呼吸道上皮)消(消化道上皮)肝胰(肝脏和胰脏)。
具体解释:内胚层是由植物极细胞形成。呼吸道上皮和消化道上皮以及由消化道上皮特化而来的各种消化腺,如肝脏、胰腺、胃腺、肠腺等由其发育而来。呼吸道上皮是指咽、喉、支气管、各级细支气管的内壁表面的上皮,肺泡上皮也属于呼吸道上皮。消化道上皮是指咽、食道、胃、小肠、大肠的内壁表面的上皮。
3.中胚层:其他的就是中胚层了。
具体解释:(可以不看):中胚层主要是由动物极内卷细胞形成的。骨骼和肌肉构成的运动系统、皮肤的真皮、整个循环系统、排泄系统、生殖系统及内脏器官的外膜等由其发育而来。循环系统包括心脏、血管以及在心脏和血管中流动的血液,造血器官——骨髓也是由中胚层发育而来的。淋巴管、淋巴器官也是由中胚层发育来的。排泄系统包括肾脏、输尿管、膀胱等均是由中胚层发育而来的。
连起来记忆为:外表感神腺,内呼消肝胰,其余为中胚层。
6、哺乳动物是最高等的脊椎动物,起源大约在多少年
自三抄叠纪晚期起,哺乳动物便开始登上大自然的历史舞台。距今已有一亿七千万年的历史了。但由于那时是恐龙等大型爬行动物的天下,哺乳动物十分弱小,在爬行动物的夹缝中艰难生存了1亿多年,直到6500万年前恐龙灭绝后,哺乳动物才获得了广阔的进
7、脊椎动物的物种起源:
高阶元生物类别的起源历来是进化生命科学的核心命题。包括人类在内的脊椎动物谱系总根底起源,涉及到脊椎动物两大类群间的演化关系,因而不仅是学术界长期探索的一个焦点问题,也是大众普遍关注的一个科学热点。现代动物学从各个不同层次进行探索,取得了较为广泛认同的脊椎动物起源分“四步走”的假说。该假说认为,在动物演化大树的两大基本分支谱系中,位于后口动物谱系顶端的脊椎动物与原口动物谱系没有直接联系,它根植于后口动物脊椎系的演化轮廓是:从最低等的后口动物棘皮动物和半索动物为始点,先后经由仅在尾部具有脊索的尾索动物和脊索纵贯全身的头索动物,最后通过脊椎和头部构造的出现,诞生出该谱系的终端产物脊椎动物。然而学术界的共识是,这一基于现代动物学信息间接推测出来的假说到底是否可靠,还必须得到真实历史资料的检验、修正和补充。
要在古生物学上进行有效的脊椎动物起源研究,应该以现代动物学信息为重要线索,在尽可能靠近脊椎动物起源的“源头”时段探寻时做好两件工作:首先是力求发现最古老、最原始的脊椎动物,接着便是以这些脊椎动物始祖为起点,向前逐步追溯它们在无脊椎后口动物中的完善的祖先序列。我国保存了五亿三千万年前的众多精美后口动物软躯体构造化石的澄江化石库,恰好靠近这样的“源头”。为中国学者揭开这一谜团提供了一个难得的机遇。
1999年昆明鱼和海口鱼的发现被英国《自然》杂志评论为“逮住第一鱼”,为难题的破解投进了一缕曙光。2003年初,舒德干等人再度在《自然》杂志著文,他们通过对数百枚海口鱼标本的深入研究,揭示出它们一方面已经开始演化出原始脊椎骨和眼睛等重要头部感官,另一方面却仍保留着无头类的原始性器官,从而证实了它们不仅是已知最古老的脊椎动物,而且还属于地球上一类最原始的脊椎动物。早期后口动物的系列性发现,不仅与现代动物学关于脊椎动物起源分“四步走”假说相一致,更重要的是添加了比这“四步走”更为原始的“第一步”,从而首次提出了脊椎动物起源至少分“五步走”的新假说。这些始见于澄江化石库地层最底部的“第一步”动物群古虫类和云南虫类,是一些创生出咽腔型鳃系统的原始分节后口动物,极可能代表着学术界期盼已久的原口动物和后口动物分节的共同祖先与由于躯体特化而丧失分节性的后口动物(包括棘皮动物和半索动物)之间的过渡类型。十分有趣的是,尽管它们由于咽鳃的出现而引发了动物体在取食、呼吸等新陈代谢方式的重大革新而成为真正的后口动物,但其躯体却仍保留着其祖先的分节性特征。舒德干解释说:“实际上,既出现创新特征又继承祖先某些原始性状的镶嵌演化是生物界一种十分常见的现象。”
在这分“五步走”的演化系列中,“第一步”的动物类群十分奇特:对1400多枚海口虫标本进行比较解剖学研究表明,它们不仅缺少脊索构造,而且在皮肤、肌肉、呼吸、循环、神经等器官系统上与脊索动物存在着根本区别;其中最为独特的是其由6对外鳃组成的呼吸系统,这与较为高等的后口动物的内鳃迥然有别。海口虫与同处“第一步”的古虫动物门在躯体构型上却相当一致:两者皆明显分节,而且躯体也都呈独特的“双重二分型”,即身体沿纵轴分为前体和后体两大部分,而前体又被一个能自由扩张的“中带”构造分为背、腹两个单元。所不同的是,海口虫兼具背神经索和腹神经索,这显示出它比古虫动物门稍略进步些,从而更靠近“第二步”中的半索动物。
舒德干指出,尽管我们提出了脊椎动物起源分“五步走”的新假说,但这仍只给出了一个演化轮廓,在其相邻演化步骤之间仍缺乏中间环节的证据。
脊椎动物主要纲的起源时间(估计) 脊椎动物的纲 时期 起源的时间 有颌鱼 奥陶纪 4.5亿年前 总鳍鱼 志留纪 4.1亿年前 两栖动物 上泥盆纪 3.7亿年前 爬行动物 上宾夕法尼亚系 3.1亿年前 鸟类 上三叠纪 2.25亿年前 哺乳动物 下侏罗纪 1.45亿年前
8、在云南省澄江县发现的海口虫化石将脊椎动物起源的地质年代推前到寒武纪早期,被誉为“人类重塑地球生命史
云南澄江抄化石群距今5.3亿年,袭被誉为“20世纪最惊人的古生物发现之一”.寒武纪早期,种类繁多的多细胞动物突然在海洋里大量出现.澄江化石记录了这段特殊时期生物群的全貌,成为迄今地球上发现的分布最集中、保存最完整、种类最丰富的‘寒武纪生命大爆发’例证. 7月1日,在俄罗斯圣彼得堡召开的第三十六届世界遗产大会上,云南澄江化石群成功申报世界自然遗产,填补了中国化石类自然遗产的空白.这一天,距离澄江化石群在云南省玉溪市澄江县城以东的帽天山被发现,刚好28年.
故答案为:√
9、下列关于生命起源和进化的叙述错误的是()A.原始生命是由非生命物质进化而来的B.脊椎动物的进化顺
A、生命起源于非生命的物质,原始大气(包括水蒸气、氢、氨、甲烷等内)在高温、紫外线以容及雷电等一些自然条件的长期作用下,逐渐形成了许多简单的物,最终经过复杂的变化、漫长的时间在原始海洋里终于演变出原始的生命,A正确;
B、脊椎动物的进化历程:原始鱼类→原始两栖类→原始爬行类→鸟类和哺乳类.B错误;
C、在研究生命的起源中,美国学者米勒模拟原始地球的条件设计了一个实验装置,将甲烷、氨、氢、水蒸气等气体泵入一个密闭的装置内,通过火花放电,合成了氨基酸,证明了从无机物合成有机物是有可能的这一结论,C正确.
D、越是古老的地层中发掘的生物化石结构越简单、低等,水生生物的化石越多;越是晚期的地层中发掘的生物化石结构越复杂、高等,陆生生物化石越多,因此,生物的进化经历了从水生到陆生,从低等到高等,从简单到复杂的进化历程,D正确.
故选:B.
10、脊索和脊椎动物的起源
表在《科学》(Science,298,2157-2166,2002)期刊上的报告显示,海鞘Ciona intestinalis基因组研究已由美国能源部附属基因组研究所、加州大学柏克莱分校分子及细胞生物学系、京都大学动物系和日本的国家遗传学研究所为首的,分布在五个国家的20多家研究单位合作完成。作为第七个基因组被破译的动物,脊椎动物的无脊椎近亲海鞘的基因组被定序,终于让科学家有机会利用比较基因组学的方法,通过和人类或其它动物的比较,进一步了解人类大脑、心脏和神经及免疫系统等的起源和演化,并且更深入地了解脊索动物和脊椎动物的起源与演化。
柏克莱加大的遗传学和发育学教授Mike Levine说道,海鞘在生物学家心中享有特别的地位,因为它提供了无脊椎动物和脊椎动物的演化联系。当你看到其成体时,会以为那是简单的动物,亚里士多德就以为它是软件动物,但当你看到其胚胎发育,它显然是复杂的高等动物,俄国生物学家Alexander Kowalevsky就认出了其幼虫尾的脊索。它们是我们很古老的表亲。
五亿多年前,动物开始快速演化,成为三、四十个体制相异的门类,至今现生的动物界可以划分为35个门。其中不具有脊椎(或脊索)的34个门统称为无脊椎动物,而剩下的就是脊索动物门了。脊索动物有四个主要共同特征:脊索(notochord)、背部中空的神经索(dorsal,hollow nerve cord)、咽裂(pharyngeal slit)和肛门后肌肉质的尾部(muscular postanal tail)。脊索动物又分为三个亚门:一是头索动物亚门(Cephalochordata),又称无头类(Acrania),以文昌鱼为代表;二是尾索动物亚门(Urochordata),又称被囊类(Tunicata),例如海鞘,这两类都是原始的脊索动物,不具有脊椎;第三个就是我们最熟悉的有头类(Craniata)之一的脊椎动物亚门(Vertebrate),包括鱼类、两生类、爬虫类、鸟类和哺乳类。
但脊椎动物却走上了另一条不同的路子,与头索动物及尾索动物相较,脊椎动物的神经系统前端特化成复杂的脑,以及与脑相关联的感觉器官,如眼、耳、鼻等,对环境有更灵敏的反应能力;运动器官也更精巧,以配合感觉器官的改变;大脑外有颅骨保护、脊索演变为分节的脊椎、内骨骼保护着体内器官,这些特征都使得脊椎动物比其它脊索动物更具环境适应力,使得脊椎动成为脊索动物这一门中,种类和数量最发达的一支。
化石记录显示,公认最早出现的脊椎动物是4.75亿年前的奥陶纪的介皮类(Ostracoderms),它们在海洋中行底栖生活,身披厚重的外骨骼,没有上下颔,也没有胸鳍、腹鳍等可活动的偶鳍。与介皮类亲缘关系最接近的脊椎动物是无颌纲(Agnatha)的盲鳗(Hag fishes)及八目鳗(lampreys),它们的脊椎还是软骨质,是相当原始的脊椎动物。
到了3.95亿年前的志留纪(Silurian)末期,地球上出现了一群具有上下颔的鱼类,这是一项极重大的变革,使原本行过滤生活的脊椎动物成了活泼的猎食者,同时也演化出了可活动的偶鳍,使得活动更灵活。这些鱼类包括已灭绝的盾皮类(Placodermi)、部分现生的软骨鱼类(Chondrichthyes),如鲨鱼、魟等,以及在现代海洋及淡水中称霸的硬骨鱼类(Osteichthyes)。硬骨鱼类的其中一支又慢慢往陆地发展,演化成了今天陆地上的各种脊椎动物。
过去许多动物学家认为脊椎动物的祖先很有可能是演化自尾索动物。海鞘的成体虽然没有明显的脊索,但是其幼虫的尾部却明显地带着一根脊索。有人认为在寒武纪早期,尾索动物的幼虫发生了幼体生殖(paedogenesis)的现象,其生殖器官在变态之前就成熟了。经过了天择,尾索动物的幼虫发展出了分节的肌肉和强壮的骨骼来支撑身子,并且因为头的形成对适应环境有相当的优越性,就演化出了带头和内骨骼的脊椎动物。
美国能源部附属基因组研究所所长Eddy Rubin认为虽然它们和我们外观大不像,但是还是有许多特征同脊椎动物是相同的。通过基因组的比较,我们可以在分子的层次上了解与对方的关系,并且研究这些相似的系统和基因是如何从五亿多年前的共同祖先演化而来的。
身为尾索动物的海鞘分布在世界上各浅海中。桶状的海鞘附着在岩石、防波堤、船舶和海底,并利用篮状滤食器滤食浮游生物。海鞘卵受精一天后就发育成只有2500个细胞的小幼虫,不久后就找个地方定居下来变态成为成体。
海鞘的基因组由160万个碱基组成,大约只有人类的20分之一,只有最小基因组脊椎动物河豚的一半。其中100一17万个碱基组成约有16000个基因,有八成在人类和其它脊椎动物中也可找到。不过其基因数只有人类的一半。美国能源部附属基因组研究所的计算基因组学主任Daniel Rokhsar说道,海鞘基因组会如此苗条的原因是,大部分在脊椎动物中有好几个备份的基因,在海鞘中却只有一份,而多出来的备份可能会突变掉或消失,或者演化成负责其它功能。从海鞘基因组中,我们可以看出人类这系谱中的新进展,例如有些特定的免疫系统和神经系统基因在海鞘就找不到,这显然是脊椎动物的新设备。脊椎动物的复杂性也可能是从大量的基因复制而产生的。
海鞘没有许多决定脊椎动物身体结构的重要Hox基因。有一些Hox基因单独存在,另一些却消失了。然而海鞘也有类似于脊椎动物的感光基因,和其它形成心脏和甲状腺的基因。但是海鞘利用血蓝蛋白,而非红血球来运送氧气,并且缺少制造胆固醇和组织胺的基因。在某些方面,海鞘和细菌、真菌和植物的相似度比和脊椎动物还来得高:制造纤维膜以支持进食吸管的基因,就和制造纤维素的基因很类似,这样的基因在其它动物是找不到,有可能是从植物等水平基因转移来的。
Levine就认为海鞘基因组的分析结果和1871年达尔文在《人类的起源》(The Descent of Man)一书中的主张完全吻合,达尔文主张脊椎动物和海鞘有共同祖先,而一支演化成海鞘,另一支在脊椎动物纲开花结果。