1、海水生态系统与淡水生态系统的差别
1,海洋生态系统中物种种类丰富、数量极大,而淡水生态系统中物种的种类和数量相对较少;
2,海洋生态系统的营养结构比较复杂,而淡水生态系统的营养结构相对简单;
3,海洋生态系统的抵抗力稳定性比较强,恢复力稳定性比较弱,而淡水生态系统恰恰相反;
4,海洋生态系统的无机环境和淡水生态系统的无机环境相差比较大。
希望能帮助你。^__^
2、为什么深层海水的营养十分丰富
所谓深层海水,是指海洋深处的海水。深层海水大量存在于距陆地5000米以外、水深200米以下的地方。在这样的深处,光合作用无法进行,有机物分解的速度远远高于其合成速度,使作为“肥料”的氮、磷、钾等微量元素大都被保存下来,因此它的营养十分丰富,这就为深层海水的利用提供了条件。
同时,深层海水受海底地形及气象条件的影响,会自然涌升到海面上来。在茫茫大海上,这种被称为“涌升海面”的地方仅占全球海洋面积的0.1%,但却集中了海洋鱼类资源的60%,甚至更多。其奥秘就隐藏在深层海水里:当含有丰富微量元素的深层海水涌上海面后,浮游生物和藻类得以更快生长,为鱼类提供了丰饶的“肥料”。研究表明,涌升海域和一般海域在鱼类产量上的差距极为惊人,单位面积涌升海域的鱼类生产量是沿岸海域的上百倍,是外洋海域的数万倍。如果人类能制造“涌升海面”,将使深层海水资源得到充分的利用,很可能给海洋渔业带来一场深刻的革命。
深层海水还是一种几乎没有被污染的水,病菌极少。深层海水营养盐浓度是表层海水的5倍,而细菌含量却只有表层海水的1/10甚至1/100。
3、海水中的营养成分主要是什么?
半个多世纪以来,由于人口的急剧增加,人们对土地的索取常常表现为不择手段,在许多地方对土地采取了掠夺式的开发利用。大量开垦土地,原始森林被砍伐,草原植被也遭到了前所未有的破坏,这些行为导致的不良后果很多,其中之一就是大地上的水土流失情况日益严重。有资料显示,水土流失按现有速度发展下去,黄土高坡上那已不太厚的黄土在30年内就会被全部冲光。水土流失不断加剧,原来存在于土壤中的氮也随着水土流失一道“搭车”去了江河湖泊之中,“千条江河归大海”,于是氮也就不费吹灰之力去了海洋。本来是作为土地的营养物质的氮却白白地流失走了,土地变得越来越贫瘠。为了保持土地的肥沃,人们只得越来越多地给土地追加含氮量高的化肥,比如农民最常使用的“尿素”等,以补充和保持土壤中氮的含量。水土在继续地流失,氮也在不知不觉中去了大海,人们仍在加大化肥的施用量。这也是一种循环,但这是一种恶性循环。海洋生物对氮的需求量本来很小,正常的氮补充就足够了。由于过量的氮进入海洋(湖泊),土地贫瘠了,海洋却过于“肥沃”了。这种现象就是我们前面提到的海洋富营养化。
在正常情况下,海水中的营养成分主要是三氮(硝态氮、亚硝态氮、氨态氮)和活性磷酸盐以及钾盐等,这些营养成分在海洋中的含量都比较低,这也是海洋生物所需要的正常含量。在这种状态下,海洋中的微体生物腰鞭毛虫根本无法大量繁殖,海水也不会变红而出现赤潮。但是,海水中的营养成分发生变化,海水富营养化之后,情况就大不一样了。腰鞭毛虫这种海洋微体生物对高营养的东西特别“偏好”,海水中的营养成分越高,它就“吃”得越起劲,繁殖得就越快、越多,赤潮也就在所难免了,赤潮出现的海域内的其他海洋生物也就在劫难逃了。
4、海水的营养物质有哪些?
海水是名符其实的液体矿藏,平均每立方公里的海水中有3570万吨的化学物质,目前世界上已知的100多种元素中,80%可以在海水中找到。海水还是陆地上淡水的来源和气候的调节器,世界海洋每年蒸发的淡水有450万立方公里,其中90%通过降雨返回海洋,10%变为雨雪落在大地上,然后顺河流又返回海洋。海水淡化技术正在发展成为产业。有人预料,随着生态环境的恶化,人类解决水荒的最后途径很可能是对海水的淡化。海水是盐的“故乡”,海水中含有各种盐类,其中百分之90左右是氯化钠,也就是食盐。另外还含有氯化镁、硫酸镁、碳酸镁及含钾、碘、钠、溴等各种元素的其他盐类。氯化镁是点豆腐用的卤水的主要成分,味道是苦的,因此,含盐类比重很大的海水喝起来就又咸又苦了。
5、过度进行海水养殖会导致水体富营养化
过度的海水养殖会造成海水生态系统失衡,动植物死亡,久而久之水体富营养化现象就会出现。
6、我国现在对海水富营养化采取哪些措施?
减少N、P排放
立体养殖
养殖些消耗有机物的海草
充分利用海水的自然流动
7、什么是海水营养指数?
富营养化综合防治调控指标探讨
李锦秀 廖文根
中国水利水电科学研究院水环境研究所
摘要:通过分析富营养化发生机理,提出富营养化防治的主要调控指标,在常规富营养化控制性水质指标基础上,引入了临界水流流态概念。建议建立一套包括水质和水流流态等富营养化综合评价指标体系的设想,对湖泊水库富营养化进行多目标防治研究。
关键词:富营养化 营养盐 临界流态 综合防治
前言
富营养化问题是当今世界面临的最主要水污染问题之一,我国在经济持续高速增长的同时,所带来的最大负效应就是环境污染日益严重,大江大河及湖库水环境质量日趋恶化。国家环保总局在"八五"期间把我国的水污染治理重点放在三江、三湖,尤其是对两大淡水湖泊太湖和滇池的富营养化治理过程中,从地方到中央极其重视,投入大量人力物力进行污染治理。但是,湖泊富营养化的治理成效不是十分理想。
湖泊富营养化化的发生、发展是多因素共同作用的结果,本文通过分析富营养化发生机理,提出富营养化防治的主要可调控指标,在常规营养盐控制性指标的基础上,引入了临界水流流态概念。以期通过开展对富营养化发生的机理性判别指标进行深入研究,为富营养化综合、有效防治措施的制定提供科学依据。
1.富营养化发生机理初步分析
提到富营养化,普遍想到的就是营养盐总磷、总氮超标。诚然,总磷总氮等营养盐是发生富营养化的必要条件。如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:
(1)总磷、总氮等营养盐相对比较充足;
(2)缓慢的水流流态;
(3)适宜的温度条件;
只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。其中的水流流态主要指以流速、水深为要素的水流结构。
富营养化的防治过程,实质上就是通过调节诱发富营养化发生的主要控制性条件,遏止富营养化发生。由于温度要素是大气候形成的自然结果,目前尚无力通过人工措施调节局部水域的气候条件,也就是说,只能通过对要素一营养盐水平和要素二水流流态的调节来控制富营养化的发生。
2.富营养化单目标污染控制进程缓慢
在以往的富营养化治理与防御过程中,人们在认识和观念上,往往把主要侧重点集中在对富营养化发生的第一要素,即控制水体营养盐浓度上,而轻视了对其它要素的调控。在国内外判别富营养化发生的条件中,也只有营养盐、水生动植物和透明度等评判指标,并制定了国家或地方水质标准和富营养化分级判别标准,以此作为水质评价和水污染治理的唯一依据。但对于富营养化发生的第二要素流态,尚无定量化的判别标准和依据。
无可否认,富营养化治理的最终目标,通过控制污染源,使水体中营养盐浓度不超过优势藻类大量繁衍的临界浓度,维持生态系统的良性循环。但是,由于我国湖泊或水域富营养化已经十分严重,水体中的营养盐浓度超过富营养化发生临界浓度标准的几倍以上的现象十分普遍,如果仅仅通过控制营养盐污染源,降低湖库营养盐浓度来防治水体富营养化的发生,其过程将是相当漫长的,主要原因如下:
(1)营养盐来源比较广,短时段内难以控制
湖泊水库作为开放式系统,湖库周围通常有大量农田径流或则河道径流汇入,大量湖库污染源调查资料显示,面源是营养盐的重要来源之一。由于面源分布广,污染控制难度很大,目前,我国的水污染控制尚以控制点源为主。另外,对于大型湖泊如太湖、滇池等,底泥淤积比较严重,而底泥中通常含有大量的营养盐,底泥污染治理难度较大。因而,在短时段内,营养盐来源控制难度较大。
(2)河道与湖泊营养盐控制标准差别很大
在地面水环境质量标准中,对于营养盐水质指标如TP而言,同样的三类水标准,河道中的标准浓度值为0.1mg/l,湖泊中的标准浓度值为0.025mg/l,河道中三类水标准浓度值比湖泊的相应标准浓度值高四倍。即使在河道中通过污染源治理,水体浓度达到三类水标准浓度值,流入湖泊以后,也超过了湖泊的四类水水质标准浓度值,更何况,在对河道进行污染源总量控制或功能区达标控制的污染源治理过程中,目前我国通常仅将有机污染指标COD和氨氮作为河道控制性水质指标,很少考虑到控制营养盐如TP浓度。
(3)水污染处理工艺复杂
受国内外污水处理工艺技术限制,目前我国已经建成运行或者正在规划设计的城市污水处理厂,普遍只考虑有机污染指标的去除效果,以有机污染指标CODmn和BOD5去除效果作为水质处理效果的评价指标,若要考虑脱氮脱磷,则处理工艺通常需要改进,处理成本也将成倍增加。
由于以上几方面不利条件的影响,导致总磷总氮等污染源控制难度很大、进程十分缓慢,我国富营养化治理成效不大。
3.水流流态在富营养化治理与防治中的作用和地位
(1)临界流态富营养化治理过程中的作用
目前,我国水体污染十分严重,即使在水质比较好的长江江段,总磷总氮的浓度普遍比较高,如在长江中上游的三峡库区江段及其重要支流嘉陵江和乌江,总体水质良好,但是,断面平均总磷浓度普遍在0.1mg/l-0.2mg/l左右,接近湖泊和水库五类水质标准,也就是说,水体中的营养盐浓度水平已经达到了湖库发生富营养化的水平。之所以在长江干流尚未出现富营养化问题,主要是长江水流比较急,不能满足湖泊富营养化发生的缓慢的水流流态条件。而初步分析2000年在长江一级支流乌江和汉江相继发生富营养化的现象表明,乌江和汉江营养盐含量常年比较高,遇到枯水季节,随着水流流态的改变,河道出现低流速区,为富营养化发生发展提供有利的水流结构。因此,在判别富营养化发生的过程中,流态是一个十分关键的判别条件。
近年来,随着我国湖泊富营养化的日趋严重,在太湖、滇池纷纷采取水利工程措施,通过引水, 调节湖库出入水量,加速湖泊换水周期,控制湖泊富营养化,取得了一定成效。其实,调水的目的,一方面通过引入比较清洁的水体,增加湖泊的稀释容量,另一方面,也是最主要的目的,是通过引水,意在改变湖泊原有不利的湖流流态结构,加速湖体水循环周期。如果在利用水利工程措施,进行湖泊调水试验过程中,从湖泊富营养化发生的机理出发,通过深入研究,提出不同营养盐水平条件下,富营养化发生的临界流态条件,以此作为湖泊引水调度时的参考依据,想必将会取得事半功倍的效果。
(2)临界流态在富营养化防治过程中的作用
由于湖库富营养化问题通常呈现发展快、危害大、治理难等特点,对富营养化进行预防性研究是控制富营养化发生、发展的最有效办法。以大型水利工程三峡水库为例,水库蓄水以后,改变最大的就是库区水流流态结构。研究表明,三峡水库建成以后,枯水期在蓄水位175m条件下,预测库区断面平均总磷总氮浓度在0.1mg/l-0.2mg/l,总氮浓度在3mg/l左右,与天然河道浓度含量相当。但是,水库建成以后,坝前深水区断面平均流速只有0.04m/s,比天然河道断面平均流速减小将近5倍左右。在天然河道状况下,由于河道流速比较大,三峡库区江段尽管总磷总氮浓度比较高,尚未出现富营养化问题。水库建成以后,随着水流流态结构的变化,库区是否诱发富营养化,这也涉及到富营养化发生的临界流态判别条件问题。三峡库区一级支流乌江和汉江出现的富营养化现象,无不给人警示。如果通过大量机理性研究,找出在不同营养盐水平条件下,富营养化发生的临界流态判别条件,将为三峡水库或其它水域的水流调度和富营养化防治研究提供关键性的科学依据。
4.结论
综合分析富营养化发生机理、发生条件,以及富营养化综合治理与防治出发,对富营养化发生的临界流态进行深入研究,具有重大的理论意义和实用价值。在未来水域富营养化评价指标体系中,建议通过研究,给出不同营养盐水平下,富营养化发生的临界流态阀值,建立一套综合反映富营养化发生、发展,包括营养盐和水流流态等的临界判别指标体系,结合以往以控制污染源为主要富营养化防治措施的基础上,充分发挥水利工程调度优势,研究富营养化综合防治对策,以期尽快遏止我国富营养化的发展态势。
8、海水的营养元素
在人类已经发现的100多种化学元素中,已有80多种在海水中被检出。海水中由N、P、Si等元素组成的某些盐类,是海洋植物生长必需的营养盐,通常称为“植物营养盐”(Floralnutrients)、“微量营养盐”(Micronutrients)或“生源要素”。此外,海水中痕量Fe,Mn,Cu,Zn,Mo,Co,B等元素,也与生物的生命过程密切相关,称为“痕量营养元素”。
由于各类营养元素在海水中含量很低,在海洋表层常常被海洋浮游植物大量消耗,甚至成为海洋初级生产力的限制因素,所以,又称它们为“生物制约元素”(thebiologicallimitingelemens)。
9、海水中的营养元素
请浏览原网页。^^
在人类已经发现的100多种化学元素中,已有80多种在海水中被检出。海水中由N、P、Si等元素组成的某些盐类,是海洋植物生长必需的营养盐,通常称为“植物营养盐”(Floralnutrients)、“微量营养盐”(Micronutrients)或“生源要素”。此外,海水中痕量Fe,Mn,Cu,Zn,Mo,Co,B等元素,也与生物的生命过程密切相关,称为“痕量营养元素”。
由于各类营养元素在海水中含量很低,在海洋表层常常被海洋浮游植物大量消耗,甚至成为海洋初级生产力的限制因素,所以,又称它们为“生物制约元素”(thebiologicallimitingelemens)。
下面主要讨论氮、磷和硅这些海洋植物营养盐在海洋中的存在形式、分布变化规律和循环。
4.4.1海洋中氮、磷、硅的主要存在形式
一、海洋中氮的主要存在形式
海洋中,氮以溶解氮(N2)、无机氮化合物、有机氮化合物等多种形式存在。
在各种形式的氮化合物中,能被海洋浮游植物直接利用的是溶解无机氮化合物(DissolvedInorganicNitrogen,DIN),包括硝酸盐、亚硝酸盐和铵盐。三者在海水中总量约为5.4×1017g。仅占海洋总氮量的2.4%。在大洋表层水中,它们的含量分别为(1~600)μg/dm3,(0.1~50)μg/dm3,(5~50)μg/dm3。
氮是构成海洋生物体内蛋白质、氨基酸的主要组分。据研究,海水中无机氮化合物被同化为植物细胞中的氨基酸,
此外,近年来的一些研究表明,还原浮游植物也会直接利用一部分溶解有机氮化合物(DissolvedOrganicNotrogen,DON),但是吸收量甚少。
二、海洋中磷的存在形式
海洋中的磷分无机和有机两种主要存在形式。
(一)海洋中的无机磷酸盐
海洋中的无机磷酸盐又有溶解态和颗粒态之分。
水溶液中溶解无机磷酸盐(DissolvedInorganicphosphorus,DIP)存在如下平衡:
在海水和纯水中,由于离子强度不同,在相同温度下,H3PO4的三级离解常数有显著差异,在25℃时,pK1在海水中为1.6,纯水中为2.2;pK2在海水中为6.1,纯水中为7.2;pK3在海水中为8.6,纯水中为12.3。H3PO4为弱三元酸,其各种形式在水溶液中的分布受pH值控制(图4—12)。由图4—12可见,在海水(pH=8,S=33,t=20℃)中,约87%的DIP以
其中,两个或两个以上的磷酸根基团通过P—O—P键结合在一起,形成链状或环状结构。多磷酸盐仅占海水总磷含量的一小部分,它们能和多种金属阳离子形成溶解态络合物。
海洋中颗粒态无机磷酸盐(PIP)主要以磷酸盐矿物存在于海水悬浮物和海洋沉积物中。其中丰度最大的是磷灰石(apatite),约占地壳总磷量的95%以上,磷灰石是包括人在内的各种生物体的牙齿、骨骼、鳞片等器官的主要成分。磷灰石的通式为Ca10(PO4)6X2,其中X=F-,OH-,Cl-。分子中Ca的可能取代物为Na+,K+,Ag+,Sr2+,Mn2+,
(二)海洋中的有机磷化合物
海洋中颗粒有机磷化合物(POP)指生物有机体内、有机碎屑中所含的磷。前者主要存在于海洋生物细胞原生质,例如,遗传物质核酸(DNA、RNA)、高能化合物三磷酸腺苷(ATP)、细胞膜的磷脂等等。所有生物细胞中都含有有机磷化合物,所以,磷是生物生长不可替代的必需元素。在海洋生物体中,C/P原子比为(105~125):1,而陆地植物由于没有含磷的结构部分,C/P原子比高得多,约为800∶1。
海水中还存在溶解有机磷化合物(DOP)。在真光层内,DOP含量可能超过DIP。研究发现,某些不稳定的溶解有机磷化合物是海洋循环中十分活跃的组分。
三、海水中硅的存在形式
海水中硅主要以溶解硅酸盐和悬浮二氧化硅两种形式存在。硅酸是一种多元弱酸,在水溶液中有下列平衡:
通过0.1~0.5μm微孔滤膜,并可用硅钼黄比色法测定的低聚合度溶解硅酸等称为“活性硅酸盐”,这部分硅酸盐易于被硅藻吸收。
硅酸脱水之后转化成为十分稳定的硅石(Silica,SiO2):
H4SiO4→SiO2+2H2O
硅是海洋植物,特别是海洋浮游植物硅藻(Diatom)类生长必需的营养盐,硅藻吸收蛋白石(Opal,SiO2·2H2O)用以构成自身的外壳。含硅海洋生物的残体沉降到海底后,形成硅质软泥,是深海沉积物的主要组分。
4.4.2海洋中硝酸盐、磷酸盐、硅酸盐的分布与变化
一、平面变化
受生物活动、大陆径流、水文状况、沉积作用、人为活动等各种因素的影响,海洋中微量营养盐的平面分布通常表现为沿岸、河口水域的含量高于大洋,太平洋、印度洋高于大西洋。开阔大洋中高纬度海域高于低纬度海域。但有时因生物活动和水文条件的变化,在同一纬度上,也会出现较大的差异。
以磷酸盐为例,在海洋浮游植物繁盛季节,沿岸、河口水域表层海水中含量可降到很低水平(0.1μmol/dm3)。而在某些受人为活动影响显著的海区,当磷、氮等营养盐大量排入,并在水体中积累时,则可能造成水体污染,出现富营养化,甚至诱发赤潮(Redtidal)。
大洋表层水中,DIP含量远低于沿岸区域,并且,不同区域的含量存在一定差异。在热带海洋表层水中,由于生物生产量大,DIP含量低,通常仅为0.1~0.2μmol/dm3,而北大西洋和印度洋表层水中DIP含量则可达2.0μmol/dm3。总的来说,大洋表层水中DIP分布比较均匀,变化范围一般不超过0.5~1.0μmol/dm3。
大洋深层水中,由北大西洋向南,经过非洲周围海域、印度洋东部到太平洋,DIP含量平稳地增加,最终富集于北太平洋深层水中。营养要素在大洋深层水中的这种分布,与大洋深水环流和海洋中营养要素的生物循环作用有关。起源于北大西洋的低温、高盐、寡营养的表层水在格陵兰附近海域沉降,形成北大西洋深层水(NADW),途经大西洋,进入印度洋,最后到达北太平洋。在深层水团这一运动过程中,不断地接受上层沉降颗粒物质分解释放的营养要素,故营养盐不断得以富集。图4—13是大洋2000m深处DIP的分布。由图可见,大洋2000m深处水中DIP含量由北大西洋1.2μmol/dm3逐渐升高到北太平洋的3.0μmol/dm3。不仅DIP如此,深层大洋水中,DIN和溶解硅也有类似的分布,当然不同元素的富集程度有所差异。对N和P来说,约富集2倍,而硅则富集5倍左右。这可能与海洋生物残体中含硅的硬壳组织比含N,P的软组织更快地从表层沉降到深层有关。
二、铅直分布
由图4—14可见,三种营养盐在大洋中铅直分布呈现类似的特点。
在大洋真光层,由于海洋浮游生物大量吸收营养盐,致使它们的含量都很低,有时甚至被消耗降低至分析零值。被生物摄取的N,P,Si等营养盐转化为生物颗粒有机物。生物新陈代谢过程的排泄物和死亡后的残体在向深层沉降的
过程中,由于微生物的矿化作用和氧化作用,有一部分重新转化为DIN、DIP和溶解硅酸盐,释放回水中。因而随深度的增大,其含量逐渐增大,并在某一深度达到最大值,此后不再随深度而变化。
当然,在各大洋中不同深度处,硝酸盐、磷酸盐和硅酸盐的含量有一定差异。对硝酸盐来说,表现为印度洋>太平洋>大西洋;磷酸盐为印度洋=太平洋>大西洋;而硅酸盐则与前两者有较明显的不同,即太平洋和印度洋的深层水中含量比大西洋深层水高得多。
在河口、近岸地区,营养盐的铅直分布明显受生物活动、底质条件与水文状况的影响。若上下层水体交换良好,铅直含量差异较小,但是在某些水体交换不良的封闭或半封闭海区,上下层海水难以对流混合,在200米以下
加。在上升流海区,由于富含N、P的深层水的涌升,也会影响它们的铅直分布。
三、季节变化
关于海水中营养盐的季节变化,已有不少研究。结果表明,中纬度(温带)海区和近岸浅海海区的季节变化较为明显,而且与海洋浮游植物生物量的消长有明显的关系,反映了生命过程的消长(图4—15)。
海水磷酸盐的季节变化。夏季(7月)浮游植物繁盛期间,无机氮被大量消耗,加上温跃层的存在,妨碍了上下层海水的混合,它们的含量都降低到很
浮游植物繁殖速率下降,生物残体中的有机氮化合物逐步被微生物矿化分解,加上水体混合作用,其含量逐渐上升并积累起来。到冬季,表层和底层水中无机氮含量都达到最大值。春季,浮游植物生长又开始
仍保持一定含量。
对比图4—16和4—17,可以看出,英吉利海峡海水中磷酸盐的季节变化规律与无机氮基本类似。
硅酸盐的季节变化与磷酸盐、硝酸盐的季节变化有密切关系,但也有其特点。主要表现在海洋浮游植物繁盛季节,尽管溶解硅被大量消耗,但其在海水中的含量仍保持一定水平,而不象N、P那样可降低至分析零值(图4—18)。这是因为每年有相当大量的含硅物质由陆地径流和风带入海洋,使海水中溶解硅得以补充。有人估计,每年补充到海洋的溶解硅总量约相当于3.24×108tSiO2。其中,由河流携带入海洋的悬浮物质是决定海水中硅含量的主要因素。
4.4.3海洋中氮、磷、硅的循环
一、海洋中的氮循环
海洋中不同形式的氮化合物,在海洋生物,特别是某些特殊微生物的作用下,经历着一系列复杂的转化过程,这些过程可简要概括如图4—19。
图中各具体转化过程分别为:
1)生物固氮作用(Biologicalnitrogenfixation):分子态氮(N2)
程;
收合成有机氮化合物,构成生物体一部分的过程;
3)硝化作用(Nitrification):在某些微生物类群的作用下,NH3
4)硝酸盐的还原作用(Assimilatorynitraterection):被生物摄
5)氨化作用(Ammoniafication):有机氮化合物经微生物分解产生
下,还原为气态氮化合物(N2或N2O)的过程。
二、海洋中的磷循环
图4—20是海洋中磷循环的示意图,图中左边是大西洋一个测站(21°12’N,122°5’W)的位温和磷酸盐含量的铅直剖面图,右边表示海洋中磷循环中控制磷分布的几个主要过程:
1)富含营养盐的上升流,这是真光层磷酸盐的主要来源;
2)在真光层,磷酸盐通过光合作用(photosynthesis)被快速地结合进生物体内,并向下沉降;
3)下沉的生物颗粒在底层或浅水沉积物中被分解,所产生的磷酸盐直接返回真光层,再次被生物所摄取利用;
4)在表层未被分解的部分颗粒沉降至深层,其中大部分在深层被分解,参加再循环;
5)表层和深层海水之间存在的缓慢磷交换作用;
6)少部分(5%)在深层也未被分解的颗粒磷进入海洋沉积物,海洋沉积物的磷经过漫长的地质过程最终又返回陆地,参加新一轮的磷循环。
三、海洋中硅的循环
海洋中硅的循环过程为:在春季,因浮游植物繁殖而被吸收,使海水中的硅被消耗;在夏、秋季,植物生长缓慢时,海水中的硅有一定回升;临近冬季时,生物死亡,其残体缓慢下沉,随着深层回升压力增加,有利于颗粒硅的再溶解作用,又缓慢释放出部分溶解硅。最后,未溶解的硅下沉到海底,加入硅质沉积中,经过漫长的地质年代后,可重新通过地质循环进入海洋(图4—21)。
10、海洋生态系是怎样的?
海洋生态系是海洋中由生物群落及其环境相互作用所构成的自然系统。广义而言,全球海洋是一个大生态系,其中包含许多不同等级的次级生态系。每个次级生态系占据一定的空间,由相互作用的生物和非生物,通过能量流和物质流形成具有一定结构和功能的统一体。海洋生态系的分类,目前无定论,按海区划分,一般分为沿岸生态系、大洋生态系、上升流生态系等;按生物群落划分,一般分为红树林生态系、珊瑚礁生态系、藻类生态系等。
海洋生态系研究开始于20世纪70年代,一般涉及自然生态系和围隔实验生态系等领域。近几十年,以围隔(或受控)实验生态系研究为主,主要开展营养层次、海水中化学物质转移、污染物对海洋生物的影响、经济鱼类幼鱼的食物和生长等研究。