導航:首頁 > 軟組織 > x線在脂肪和液體和軟組織透過率

x線在脂肪和液體和軟組織透過率

發布時間:2020-09-05 00:55:10

1、X線機的X射線的性質

⒈穿透作用 穿透作用是指X射線通過物質時不被吸收的能力。X射線能穿透一般可見光所不能透過的物質。可見光因其波長較長,光子其有的能量很小,當射到物體上時,一部分被反射,大部分為物質所吸收,不能透過物體;而X射線則不然,咽其波長短,能量大,照在物質上時,僅一部分被物質所吸收,大部分經由原子間隙而透過,表現出很強的穿透能力。X射線穿透物質的能力與X射線光子的能量有關,X射線的波長越短,光子的能量越大,穿透力越強。X射線的穿透力也與物質密度有關,密度大的物質,對X射線的吸收多,透過少;密度小者,吸收少,透過多。利用差別吸收這種性質可以把密度不同的骨骼、肌肉、脂肪等軟組織區分開來。這正是X射線透視和攝影的物理基礎。
⒉電離作用
物質受X射線照射時,使核外電子脫離原子軌道,這種作用叫電離作用。在光電效應和散射過程中,出現光電子和反沖電子脫離其原子的過程叫一次電離,這些光電子或反沖電子在行進中又和其它原子碰撞,使被擊原子逸出電子叫二次電離。在固體和液體中。電離後的正、負離子將很快復合,不易收集。但在氣體中的忘離電荷卻很容易收集起來,利用電離電荷的多少可測定X射線的照射量:X射線測量儀器正是根據這個原理製成的。由於電離作用,使氣體能夠導電;某些物質可以發生化學反應;在有機體內可以誘發各種生物效應。電離作用是X射線損傷和治療的基礎。
⒊熒光作用
由於X射線波長很短,因此是不可見的。但它照射到某些化合物如磷、鉑氰化鋇、硫化鋅鎘、鎢酸鈣等時,由於電離或激發使原子處於激發狀態,原子回到基態過程中,由於價電子的能級躍遷而輻射出可見光或紫外線,這就是熒光。X射線使物質發生熒光的作用叫熒光作用。熒光強弱與X射線量成正比。這種作用是X射線應用於透視的基礎。在X射線診斷工作中利用這種熒光作用可製成熒光屏,增感屏,影像增強器中的輸入屏等。熒光屏用作透視時觀察X射線通過人體組織的影像,增感屏用作攝影時增強膠片的感光量。
⒋熱作用
物質所吸收的X射線能,大部分被轉變成熱能,使物體溫度升高,這就是熱作用。
⒌干涉、衍射、反射、折射作用
這些作用與可見光一樣。在X射線顯微鏡、波長測定和物質結構分析中都得到應用。 1.感光作用 同可見光一樣,X射線能使膠片感光。當X射線照射到膠片上的溴化銀時,能使銀粒子.沉澱而使膠片產生「感光作用」。膠片感光的強弱與X射線量成正比。當X射線通過人體時,囡人體各組織的密度不同,對X射線量的吸收不同,致綻膠片上所獲得的感光度不同,從而獲得X射線的影像。這就是應用X射線作攝片檢查的基礎。
⒉著色作用 某些物質如鉑氰化鋇、鉛玻璃、水晶等,經X射線長期照射後,其結晶體脫水而改變顏色,這就叫做著色作用。 隨著電磁學、高真空技術及其他學科的發展,1910年美國物理學家W.D.Coolidge發表了鎢燈絲X射線管製造成功的報告。1913年開始實際使用,它的最大特點是*鎢燈絲加熱到白熾狀態以提供管電流所需的電子,所以調節燈絲的加熱溫度就可以控制管電流,從而使管電壓和管電流可以分別獨立調節,而這正是提高影像質量所需要的。
1913年濾線柵的發明,部分地消除了散射線,提高了影像的質量。1914年製成了鎢酸鎘熒光屏,開始了X射線透視的應用。1923年發明了雙焦點X射線管,解決了X射線攝影的需要。X射線管的功率可達幾千瓦,矩形焦點的邊長僅為幾毫米,X射線影像質量大大提高。同時,造影劑的逐漸應用,使X射線的診斷范圍也不斷擴大。它不再是一件單純拍攝骨骼影像的簡單工具,卻已成為對人體組織器官中那些自然對比差(對X射線吸收差小)的胃腸道、支氣管、血管、腦室、腎、膀胱等也能檢查的重要的醫學診斷設施了。與此同時,X射線在治療方面也開始得到應用。

2、醫學影像學里密度分辨力和空間分辨力的區別和聯系

一、區別

1、解析度不同

(1)密度解析度表示的是影像中能顯示的最小密度差別。

(2)CT的密度解析度受雜訊和顯示物的大小所制約,雜訊越小和顯示物越大,密度解析度越佳。CT圖像的密度解析度比X線照片高得多。

2、表示形式不同

密度解析度能夠區分開的密度差別程度以%表示。計算機體層攝影性能和說明圖像質量的指標之一,如果計算機體層攝影的密度解析度為0.5%,則表示兩種物質的密度差別等於或大於0.5%時即可辨別出來,密度差別小於0.5%時,由於受雜訊的干擾,就無法辨別。

二、聯系

空間分辨力在CT設備中有時又稱作幾何分辨力或高對比度分辨力,它是指在高對比度的情況下鑒別細微結構的能力,也即顯示最小體積病灶或結構的能力。在評價CT圖像質量的時候,經常首先考慮空間分辨力。

CT圖像由於檢測器有一定大小,取樣有一定距離,所以空間分辨力由X線管焦點的幾何尺寸決定,而基本與X射線劑量大小無關。在X線劑量一定的情況下,空間分辨力與密度分辨力存在一定的制約關系,不可能同時改善空間分辨力與對比度分辨力。

擴展材料:

醫學影像學:X線、CT、MRI 成象技術與臨床應用 

一、圖像存檔與傳輸系統(PACS)是保存和傳輸圖像的設備與軟體系統,優點為:

1、保存了圖像信息,便於日後再處理;

2、遠離放射科的醫生可隨時調閱圖像讀片與診斷,提高了工作效率;

3、便於圖像傳遞和交流,可開展復合影像診斷、多學科會診;

4、可避免膠片在傳遞過程中丟失和出錯,成為醫院現代化的管理手段;

5、節約膠片開支、管理費用,減少存放空間,從而進入無膠片時代。 

二、數字減影血管造影(DSA)通過計算器處理數字影像信息,常用時間減影法,消除骨骼和軟組織影像,使血管清晰顯影的成象技術。 

腦血管造影是將有機碘對比劑引入腦血管顯示腦血管的方法,包括頸動脈造影和椎動脈造影。常用DSA技術,分別攝取腦動脈期、靜脈期和靜脈竇期圖像。 

X線成像–電磁波,波長0.0006~50nm 

三、X線成象原理與穿透性、熒光效應和感光效應,及人體組織結構密度和厚度的差別有關,與成像有關的特性:

1、穿透性X線成象的基礎。電壓愈高,穿透力愈強; 

2、熒光效應透視檢查的基礎。X線激發硫化鋅鎘、鎢酸鈣等發出熒光;

3、感光效應X線攝影的基礎。溴化銀中的銀離子被還原成金屬銀,沉澱於膠片的膠膜內;

4、電離效應放射治療的基礎。X線射入人體,引起生物學方面的改變,即生物效應。 

四、X線圖像特點:

1、灰階圖像;

2、重疊圖像;

3、放大圖像;

4、可有失真。 

五、灰階影像是以光學密度反應人體組織結構的解剖及病理狀態。圖像上的白影與黑影除與厚度有關外,主要反映組織密度高低(密度高呈白影,密度低呈黑影)。

六、熒光透視

1、優點:可轉動患者體位;了解器官動態變化;操作方面,費用低; 

2、缺點:對比度和清晰度差;缺乏客觀紀錄。 

七、X線攝影

1、優點:對比度和清晰度佳; 

2、缺點:無立體概念;無法觀察功能。 五造影檢查將對比劑引入體內產生人工對比,常用對比劑: 

八、高密度對比劑

1、鋇劑:醫用硫酸鋇; 

2、碘劑:無機(碘化油、碘苯酯)、有機(離子型如泛影葡胺;非離子型如碘必樂、優維顯)。 

離子型對比劑具高滲性,毒副作用大;非離子型低滲性、低年度、低毒性。

九、低密度對比劑空氣、O2、CO2 

十、造影方式

1、間接引入:IVP; 

2、直接引入:口服、灌注、穿刺注入。 五臨床應用胃腸道、骨骼系統和胸部多選用。 

十一、CT成像–用X線束對人體某一層面照射,測定透過的X線量,數字化後經計算機得出該層面組織各個單位容積的吸收系數,再重建圖像。 

1、CT圖像特點

(1)優點:密度分辨力高、量化的說明密度高低程度的量值(CT值)。

(2)空間分辨力不如X線圖像。

(3)需要多個連續的層面圖像。 

2、人體組織CT值

(1)水:0 HU;

(2)空氣:–1000 HU; 

(3)脂肪:–90~–70 HU; 

(4)軟組織;20~50 HU;

(5)骨:+1000 HU。 

3、臨床應用

(1)中樞神經系統疾病:顱內腫瘤、膿腫與肉芽腫、寄生蟲病、外傷性血腫與腦損傷、缺血性腦梗死與腦出血。

(2)框內佔位性病變、鼻竇癌、鼻咽癌等。

(3)肺癌和縱隔腫瘤。

(4)肝、膽、胰、脾、腹腔及腹膜後間隙及腎上腺及泌尿生殖系統。

(5)胃腸病變向腔外侵犯或遠處轉移。 

十二、MRI成像–磁共振信號有T-1、T2、和質子密度等參數,由這些參數構成MRI圖像。 

T-1-終止射頻脈沖,則縱向磁化逐漸恢復到原狀,此過程為縱向弛豫,恢復所需時間為縱向弛豫時間,簡稱T-1。以T1參數構成的圖像為T1加權像(T-1-WI)。 

T2橫向磁化也很快消失,此過程為橫向弛豫,所需時間為橫向弛豫時間,簡稱T-2。以T2參數構成的圖像為T2加權像(T2-WI)。 

1、MR信號的產生在弛豫過程中,質子吸收RF脈沖組合的能量釋放產生MR信號。通過調節成象參數TR和TE,及可分別獲取主要反映T1、T2及PDWI對比的MR信號,由此產生T-1-WI、T2-WI或PDWI圖像。

(1)T-1-WI上呈高信號亞急性血腫、脂肪、蛋白含量高、黑色素; 

(2)T-2WI上呈低信號鈣質、空氣、流空、脂肪及蛋白質含量少的。 

2、MRI圖像特點

(1)多參數灰階圖像;

(2)多方位斷層圖象;

(3)流空效應:流動的液體,在成象過程中採集不到信號而呈無信號黑影;

(4)MRI對比增強效應:順磁性物質作為對比劑可縮短周圍質子的弛豫時間,稱質子弛豫增強效應;

(5)偽色彩的功能圖像。 

3、MRI檢查技術

(1)序列技術;

(2)自迴旋波(SE)序列;

(3)梯度回波(GRE)序列;

(4)反轉恢復(IR)序列;

(5)平面回波成象(EPI)。 

4、MR水成象技術用很長TR和很長TE可獲得重T2-WI,使靜態或緩慢流動液體呈高信號,背景的其它組織呈低信號而形成良好對比。

經重組可使含液體器官或間隙呈高信號,獲得猶如造影效果的圖像,即MR水成象,包括MRCP、MRU、MRM等。  

5、臨床應用

(1)腦與脊髓疾病;

(2)肺門與縱隔淋巴結;

(3)心臟大血管內腔;

(4)診斷乳腺癌;

(5)清晰顯示軟骨、關節囊等結構。 

6、各系統檢查首選儀器

(1)骨骼平片首選,進一步CT;

(2)關節MRI; 

(3)呼吸系統平片首選,進一步CT;

(4)急腹症平片首選,進一步CT;

(5)腹部閉合性損傷超聲、CT;

(6)食管病變鋇餐造影; 

(7)胃、十二指腸超聲、氣鋇雙重對比造影;

(8)肝超聲和C T首選,進一步MRI,也可做肝動脈造影;

(9)胰腺超聲、CT。

3、x光機的X光機的原理及構造

X射線機原理及構造 1895年德國物理學家倫琴(W.C.RÖntgen)在研究陰極射線管中氣體放電現象時,用一隻嵌有兩個金屬電極(一個叫做陽極,一個叫做陰極)的密封玻璃管,在電極兩端加上幾萬伏的高壓電,用抽氣機從玻璃管內抽出空氣。為了遮住高壓放電時的光線(一種弧光)外泄,在玻璃管外面套上一層黑色紙板。他在暗室中進行這項實驗時,偶然發現距離玻璃管兩米遠的地方,一塊用鉑氰化鋇溶液浸洗過的紙板發出明亮的熒光。再進一步試驗,用紙板、木板、衣服及厚約兩千頁的書,都遮擋不住這種熒光。更令人驚奇的是,當用手去拿這塊發熒光的紙板時,竟在紙板上看到了手骨的影像。
當時倫琴認定:這是一種人眼看不見、但能穿透物體的射線。因無法解釋它的原理,不明它的性質,故借用了數學中代表未知數的「X」作為代號,稱為「X」射線(或稱X射線或簡稱X線)。這就是X射線的發現與名稱的由來。此名一直延用至今。後人為紀念倫琴的這一偉大發現,又把它命名為倫琴射線。
X射線的發現在人類歷史上具有極其重要的意義,它為自然科學和醫學開辟了一條嶄新的道路,為此1901年倫琴榮獲物理學第一個諾貝爾獎金。
科學總是在不斷發展的,經倫琴及各國科學家的反復實踐和研究,逐漸揭示了X射線的本質,證實它是一種波長極短,能量很大的電磁波。它的波長比可見光的波長更短(約在0.001~100nm,醫學上應用的X射線波長約在0.001。~0.1nm之間),它的光子能量比可見光的光子能量大幾萬至幾十萬倍。因此,X射線除具有可見光的一般性質外,還具有自身的特性。 (一)物理效應
1.穿透作用 穿透作用是指X射線通過物質時不被吸收的能力。X射線能穿透一般可見光所不能透過的物質。可見光因其波長較長,光子其有的能量很小,當射到物體上時,一部分被反射,大部分為物質所吸收,不能透過物體;而X射線則不然,因其波長短,能量大,照在物質上時,僅一部分被物質所吸收,大部分經由原子間隙而透過,表現出很強的穿透能力。X射線穿透物質的能力與X射線光子的能量有關,X射線的波長越短,光子的能量越大,穿透力越強。X射線的穿透力也與物質密度有關,密度大的物質,對X射線的吸收多,透過少;密度小者,吸收少,透過多。利用差別吸收這種性質可以把密度不同的骨骼、肌肉、脂肪等軟組織區分開來。這正是X射線透視和攝影的物理基礎。
2.電離作用 物質受X射線照射時,使核外電子脫離原子軌道,這種作用叫電離作用。在光電效應和散射過程中,出現光電子和反沖電子脫離其原子的過程叫一次電離,這些光電子或反沖電子在行進中又和其它原子碰撞,使被擊原子逸出電子叫二次電離。在固體和液體中。電離後的正、負離子將很快復合,不易收集。但在氣體中的忘離電荷卻很容易收集起來,利用電離電荷的多少可測定X射線的照射量:X射線測量儀器正是根據這個原理製成的。由於電離作用,使氣體能夠導電;某些物質可以發生化學反應;在有機體內可以誘發各種生物效應。電離作用是X射線損傷和治療的基礎。
3.熒光作用 由於X射線波長很短,因此是不可見的。但它照射到某些化合物如磷、鉑氰化鋇、硫化鋅鎘、鎢酸鈣等時,由於電離或激發使原子處於激發狀態,原子回到基態過程中,由於價電子的能級躍遷而輻射出可見光或紫外線,這就是熒光。X射線使物質發生熒光的作用叫熒光作用。熒光強弱與X射線量成正比。這種作用是X射線應用於透視的基礎。在X射線診斷工作中利用這種熒光作用可製成熒光屏,增感屏,影像增強器中的輸入屏等。熒光屏用作透視時觀察X射線通過人體組織的影像,增感屏用作攝影時增強膠片的感光量。
4.熱作用物質所吸收的X射線能,大部分被轉變成熱能,使物體溫度升高,這就是熱作用。
5.干涉、衍射、反射、折射作用這些作用與可見光一樣。在X射線顯微鏡、波長測定和物質結構分析中都得到應用。
(二)化學效應
1.感光作用 同可見光一樣,X射線能使膠片感光。當X射線照射到膠片上的溴化銀時,能使銀粒子.沉澱而使膠片產生「感光作用」。膠片感光的強弱與X射線量成正比。當X射線通過人體時,因人體各組織的密度不同,對X射線量的吸收不同,致綻膠片上所獲得的感光度不同,從而獲得X射線的影像。這就是應用X射線作攝片檢查的基礎。
2.著色作用 某些物質如鉑氰化鋇、鉛玻璃、水晶等,經X射線長期照射後,其結晶體脫水而改變顏色,這就叫做著色作用。
(三)生物效應』
當X射線照射到生物機體時,生物細胞受到抑制、破壞甚至壞死,致使機體發生不同程度的生理、病理和生化等方面的改變,稱為X射線的生物效應。不同的生物細胞,對X射線有不同的敏感度。楓X射線可以治療人體的某些疾病,如腫瘤等。另一方面,它對正常機體也有傷害,因此要做好對人體的防護。X射線的生物效應歸根結底是由X射線的電離作用造成的。 由於X射線具有如上種種效應!因而在工業、農業、科學研究等領域,獲得了廣泛 的應用,如工業探傷,晶體分析等。在醫學上,X射線技術已成為對疾病進行診斷和治療的專門學科,在醫療衛生事業中佔有重要地位。 (一)X射線診斷
X射線應用於醫學診斷,主要依據X射線的穿透作用、差別吸收、感光作用和熒光作用。由於X射線穿過人體時,受到不同程度的吸收,如骨骼吸收的X射線量比肌肉吸收的量要多,那麼通過人體後的X射線量就不一樣,這樣便攜帶了人體各部密度分布的信息,在熒光屏上或攝影膠片上引起的熒光作用或感光作用的強弱就有較大差別,因而在熒光屏上或攝影膠片上(經過顯影、定影)將顯示出不同密度的陰影。根據陰影濃淡的對比,結合臨床 表現、化驗結果和病理診斷,即可判斷人體某一部分是否正常。於是,X射線診斷技術便成了世界上最早應用的非刨傷性的內臟檢查技術。
(二)X射線治療
X射線應用於治療,主要依據其生物效應,應用不同能量的X射線對人體病灶部分的細胞組織進行照射時,即可使被照射的細胞組織受到破壞或抑制,從而達到對某些疾病,特別是腫瘤的治療目的。
(三)X射線防護
在利用X射線的同時,人們發現了導致病人脫發、皮膚燒傷、工作人員視力障礙,白血病等射線傷害的問題,為防止X射線對人體的傷害,必須採取相應的防護措施。以上構成了X射線應用於醫學方面的三大環節——診斷、治療和防護。 自1895年以來,X射線診斷與治療技術有了飛速的發展,主要進展可分為以下幾個階段:
(一)離子X射線管階段(1895~1912)
這是X射線設備的早期階段。當時X射線機的結構非常簡單,使用效率很低的含氣式冷陰極離子X射線管,運用笨重的感應線圈發生高壓,裸露式的高壓機件,更沒有精確的控制裝置。X射線機裝置容量小、效率低、穿透力弱、影像清晰度不高、缺乏防護0據資料記載,當時拍攝一張X射線骨盆像,需長達40~60min的曝光時間,結果照片拍成之後,受檢者的皮膚卻被X射線燒傷。
(二)電子X射線管階段(1913~1928)
隨著電磁學、高真空技術及其他學科的發展,1910年美國物理學家W.D.Coolidge發表了鎢燈絲X射線管製造成功的報告。1913年開始實際使用,它的最大特點是*鎢燈絲加熱到白熾狀態以提供管電流所需的電子,所以調節燈絲的加熱溫度就可以控制管電流,從而使管電壓和管電流可以分別獨立調節,而這正是提高影像質量所需要的。
1913年濾線柵的發明,部分地消除了散射線,提高了影像的質量。1914年製成了鎢酸鎘熒光屏,開始了X射線透視的應用。1923年發明了雙焦點X射線管,解決了X射線攝影的需要。X射線管的功率可達幾千瓦,矩形焦點的邊長僅為幾毫米,X射線影像質量大大提高。同時,造影劑的逐漸應用,使X射線的診斷范圍也不斷擴大。它不再是一件單純拍攝骨骼影像的簡單工具,卻已成為對人體組織器官中那些自然對比差(對X射線吸收差小)的胃腸道、支氣管、血管、腦室、腎、膀胱等也能檢查的重要的醫學診斷設施了。與此同時,X射線在治療方面也開始得到應用。
X光的產生方式
三種方式可產生X光:軔致輻射(Bremsstrahlung)、電子俘獲、內轉換,x光機產生X光的機理屬於軔致輻射。
電子俘獲:
β衰變包括3種方式:β-衰變、β+衰變和電子俘獲(EC).其中電子俘獲(EC)這種衰變可以表示為即母核俘獲1個核外軌道電子使核內1個質子轉變為中子,並放出1個中微子,所以子核的電荷數變為Z-1,而質量數保持不變.在一般情況下,K層上的電子被原子核俘獲的居多,因為K層最靠近原子核,被俘獲的概率最大,但是L層上的電子被俘獲的概率也是存在的.原子核在俘獲了電子之後,子核原子的K層或L層上將出現一個電子空位,當某一外層電子來填補這個空位時,可能會出現下面兩種情況之一:要麼以標識X射線的形式將多餘的能量釋放,要麼將多餘的能量交給另一層上的其他電子,此電子獲得能量而脫離原子,成為俄歇電子.伴有X射線或俄歇電子的發射是K俘獲過程的標志.
內轉換:
原子核可以通過某種方式(譬如β衰變)達到激發態,處於激發態的原子核可以通過發射γ射線躍遷到低激發態或基態,這種現象稱為γ衰變或稱γ躍遷.核能級躍遷所發出的光子與原子能級躍遷所發出的光子沒本質的差別,不同的是原子能級躍遷發射的光子能量只有eV~keV數量級,而核能級躍遷發射的光子能量卻有MeV數量級.在不考慮核的反沖時,光子能量Eg可以表示為下面的形式Eg=Es-Ex.有時原子核從激發態到較低能態的躍遷並不放出光子,而是把能量直接交給核外電子,使電子脫離原子,這種現象稱為內轉換(IC),脫離原子的電子稱為內轉換電子.處於激發態的原子核可以通過放射γ光子回到基態,也可以通過產生內轉換電子回到基態,究竟發生的是哪種過程,完全決定於核的能級特性.內轉換電子的動能與殼層電子的電離能之和應是原子核的兩能級間的能量差.也就是等於在兩原子核能級間躍遷所輻射出的γ光子的能量.對於內轉換的研究是獲得有關核能級知識的重要手段.當然通過內轉換方式還可以產生原子的特徵X射線.
x光機基本原理
X-ray 是由德國侖琴教授在1895年所發現。這種由真空管發出能穿透物體的輻射線,在電磁光譜上能量較可見光強,波長較短,頻率較高,相類似之輻射線有宇宙射線,X-ray等。
產生X-Ray必須要有X光球管,而X光球管基本構造必須擁有:
陰極燈絲 (Cathod)
陽極靶 (Anode)
真空玻璃管 (Evacuated glass envelope)
當然還要有電源能量供應
X射線特性
能穿透物體 為不可見光 於電磁波光譜內 波長范圍廣 直線散射 光速進行 能使螢光物質發光 能使底片感光 會造成散射線
當X-ray進入物體時,會有三種情形發生:
被物體吸收 (Absorption)
產生散射現(Scatter)
穿透(Penetration)
影響圖像效果之四要素:
Density (黑化度)- mAs
Contrast(對比度)- kVp
Sharpness(清晰度)- motion, 幾何參數
Distortion(失真度)- 位置,角度
X射線波長與影片上對比度之關系
在X-ray穿透過病人,其穿透率主要和病人組織結構及X射線波長有關。
短波長X-ray (high kV)
能量較高,穿透性好,造成在影片上較低之對比度(low contrast)。
長波長X-ray (low kV)
能量較低,較易被人體所吸收,穿透性較差,而在影片上對比度較高(High contrast)。
應用
X光機廣泛應用於醫療衛生,科學教育,工業各個領域,例如X光機可用於醫院協助醫生診斷疾病,用於工業的無損探傷,火車站和機場的安全檢查等等。

4、x線對脂肪和肺的穿透能力哪一個強

肌肉的密度比脂肪高,所以肌肉吸收X線比脂肪多。在軟組織X線片里可以看到比較黑的部分是脂肪組織,因為脂肪吸收X線少的緣故。CT片里的CT值(也稱H值),脂肪的CT值是-20~-80H,肌肉的CT值是40~80H,說明肌肉吸收X線高於脂肪組織。

5、影像學的X線檢查

X線圖像是由從黑到白不同灰度的影像所組成。這些不同灰度的影像反映了人體組織結構的解剖及病理狀態。這就是賴以進行X線檢查的自然對比。對於缺乏自然對比的組織或器官,可人為地引入一定量的在密度上高於或低於它的物質,便產生人工對比。因此,自然對比和人工對比是X線檢查的基礎。 包括熒光透視和攝影。
熒光透視(fluoroscopy):簡稱透視。為常用X線檢查方法。由於熒光亮度較低,因此透視一般須在暗室內進行。透視前須對視力行暗適應。採用影像增強電視系統,影像亮度明顯增強,效果更好。透視的主要優點是可轉動患者體位,改變方向進行觀察;了解器官的動態變化,如心、大血管搏動、膈運動及胃腸蠕動等;透視的設備簡單,操作方便,費用較低,可立即得出結論等。主要缺點是熒屏亮度較低,影像對比度及清晰度較差,難於觀察密度與厚度差別較少的器官以及密度與厚度較大的部位。例如頭顱、腹部、脊柱、骨盆等部位均不適宜透視。另外,缺乏客觀記錄也是一個重要缺點。
X線攝影(radiography):所得照片常稱平片(plainfilm)。這是應用最廣泛的檢查方法。優點是成像清晰,對比度及清晰度均較好;不難使密度、厚度較大或密度、厚度差異較小部位的病變顯影;可作為客觀記錄,便於復查時對照和會診。缺點是每一照片僅是一個方位和一瞬間的X線影像,為建立立體概念,常需作互相垂直的兩個方位攝影,例如正位及側位;對功能方面的觀察,不及透視方便和直接;費用比透視稍高。
這兩種方法各具優缺點,互相配合,取長補短,可提高診斷的正確性。 體層攝影(tomography):普通X線片是X線投照路徑上所有影像重疊在一起的總和投影。一部分影像因與其前、後影像重疊,而不能顯示。體層攝影則可通過特殊的裝置和操作獲得某一選定層面上組織結構的影像,而不屬於選定層面的結構則在投影過程中被模糊掉。其原理如圖1-1-6所示。體層攝影常用以明確平片難於顯示、重疊較多和處於較深部位的病變。多用於了解病變內部結構有無破壞、空洞或鈣化,邊緣是否銳利以及病變的確切部位和范圍;顯示氣管、支氣管腔有無狹窄、堵塞或擴張;配合造影檢查以觀察選定層面的結構與病變。
軟線攝影:採用能發射軟X線的鉬靶管球,用以檢查軟組織,特別是乳腺的檢查。
其他:特殊檢查方法尚有①放大攝影,採用微焦點和增大人體與照片距離以顯示較細微的病變;②熒光攝影,熒光成像基礎上進行縮微攝片,主要用於集體體檢;③記波攝影,採用特殊裝置以波形的方式記錄心、大血管搏動,膈運動和胃腸蠕動等。
在曝光時,X線管與膠片作相反方向移動,而移動的軸心即在選定層面的平面上。結果,在被檢查的部位內,只有選定的一層結構始終投影在膠片上的固定位置(A'),從而使該層面的結構清楚的顯影,而其前後各層結構則因曝光時,在膠片上投影的位置不斷移動而成模糊影像(B') 人體組織結構中,有相當一部分,只依靠它們本身的密度與厚度差異不能在普通檢查中顯示。此時,可以將高於或低於該組織結構的物質引入器官內或周圍間隙,使之產生對比以顯影,此即造影檢查。引入的物質稱為造影劑(contrastmedia)。造影檢查的應用,顯著擴大了X線檢查的范圍。
(一)造影劑 按密度高低分為高密度造影和低密度造影劑兩類。
1.高密度造影劑 為原子序數高、比重大的物質。常用的有鋇劑和碘劑。
鋇劑為醫用硫酸鋇粉末,加水和膠配成。根據檢查部位及目的,按粉末微粒大小、均勻性以及用水和膠的量配成不同類型的鋇混懸液,通常以重量/體積比來表示濃度。硫酸鋇混懸液主要用於食管及胃腸造影,並可採用鋇氣雙重對比檢查,以提高診斷質量。
碘劑種類繁多,應用很廣,分有機碘和無機碘制劑兩類。
有機碘水劑類造影劑注入血管內以顯示器官和大血管,已有數十年歷史,且成為常規方法。它主要經肝或腎從膽道或泌尿道排出,因而廣泛用於膽管及膽囊、腎盂及尿路、動脈及靜脈的造影以及作CT增強檢查等。70年代以前均採用離子型造影劑。這類高滲性離子型造影劑,可引起血管內液體增多和血管擴張,肺靜脈壓升高,血管內皮損傷及神經毒性較大等缺點,使用中可出現毒副反應。70年代開發出非離子型造影劑,它具有相對低滲性、低粘度、低毒性等優點,大大降低了毒副反應,適用於血管、神經系統及造影增強CT掃描。惜費用較高,尚難於普遍使用。
上述水溶性碘造影劑有以下類型:①離子型,以泛影葡胺(urografin)為代表;②非離子型以碘苯六醇(iohexol)、碘普羅胺(iopromide)碘必樂(iopamidol)為代表;③非離子型二聚體,以碘曲侖(iotrolan)為代表。
無機制碘劑當中,布希化油(lipoidol)含碘40%,常用於支氣管、瘺管子官輸入卵管造影等。碘化油造影後吸收極慢,故造影完畢應盡可能吸出。
脂肪酸碘化物的碘苯酯(pantopaque),可注入椎管內作脊髓造影,但現已用非離子型二聚體碘水劑。
2.低密度造影劑 為原子序數低、比重小的物質。應用於臨床的有二氧化碳、氧氣、空氣等。在人體內二氧化碳吸收最快,空氣吸收最慢。空氣與氧氣均不能注入正在出血的器官,以免發生氣栓。可用於蛛網膜下腔、關節囊、腹腔、胸腔及軟組織間隙的造影。
(二)造影方式 有以下兩種方式。
1.直接引入 包括以下幾種方式;①口服法:食管及胃腸鋇餐檢查;②灌注法:鋇劑灌腸,支氣管造影,逆行膽道造影,逆行泌尿道造影,瘺管、膿腔造影及子宮輸卵管造影等;③穿剌注入法:可直接或經導管注入器官或組織內,如心血管造影,關節造影和脊髓造影等。
2.間接引入 造影劑先被引入某一特定組織或器官內,後經吸收並聚集於欲造影的某一器官內,從而使之顯影。包括吸收性與排泄性兩類。吸收性如淋巴管造影。排泄性如靜脈膽道造影或靜脈腎盂造影和口服法膽襄造影等。前二者是經靜脈注入造影劑後,造影劑聚集於肝、腎,再排泄入膽管或泌尿道內。後者是口服造影劑後,造影劑經腸道吸收進入血循環,再到肝膽並排入膽襄內,即在蓄積過程中攝影,現已少用。
(三)檢查前准備造影反應的處理 各種造影檢查都有相應的檢查前准備和注意事項。必須嚴格執行,認真准備,以保證檢查效果和患者的安全。應備好搶救葯品和器械,以備急需。
在造影劑中,鋇劑較安全,氣體造影時應防止氣栓的發生。靜脈內氣栓發生後應立即將患者置於左側卧位,以免氣體進入肺動脈。造影反應中,以碘造影劑過敏較常見並較嚴重。在選用碘造影劑行造影時,以下幾點值得注意:①了解患者有無造影的禁忌證,如嚴重心、腎疾病和過敏體質等;②作好解釋工作,爭取患者合作;③造影劑過敏試驗,一般用1ml30%的造影劑靜脈注射,觀察15分鍾,如出現胸悶、咳嗽、氣促、惡心、嘔吐和蕁麻疹等,則為陽性,不宜造影檢查。但應指出,盡管無上述症狀,造影中也可發生反應。因此,關鍵在於應有搶救過敏反應的准備與能力;④作好搶救准備,嚴重反應包括周圍循環衰竭和心臟停搏、驚厥、喉水腫、肺水腫和哮喘發作等。遇此情況,應立即終止造影並進行抗休克、抗過敏和對症治療。呼吸困難應給氧,周圍循環衰竭應給去甲腎上腺素,心臟停搏則需立即進行心臟按摩。 CT圖像是由一定數目由黑到白不同灰度的象素按矩陣排列所構成。這些象素反映的是相應體素的X線吸收系數。不同CT裝置所得圖像的象素大小及數目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;數目可以是256×256,即65536個,或512×512,即262144個不等。顯然,象素越小,數目越多,構成圖像越細致,即空間分辨力(spatialresolution)高。CT圖像的空間分辨力不如X線圖像高。
CT圖像是以不同的灰度來表示,反映器官和組織對X線的吸收程度。因此,與X線圖像所示的黑白影像一樣,黑影表示低吸收區,即低密度區,如肺部;白影表示高吸收區,即高密度區,如骨骼。但是CT與X線圖像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人體軟組織的密度差別雖小,吸收系數雖多接近於水,也能形成對比而成像。這是CT的突出優點。所以,CT可以更好地顯示由軟組織構成的器官,如腦、脊髓、縱隔、肺、肝、膽、胰以及盆部器官等,並在良好的解剖圖像背景上顯示出病變的影像。
x 線圖像可反映正常與病變組織的密度,如高密度和低密度,但沒有量的概念。CT圖像不僅以不同灰度顯示其密度的高低,還可用組織對X線的吸收系數說明其密度高低的程度,具有一個量的概念。實際工作中,不用吸收系數,而換算成CT值,用CT值說明密度。單位為Hu(Hounsfield unit)。
水的吸收系數為10,CT值定為0Hu,人體中密度最高的骨皮質吸收系數最高,CT值定為+1000Hu,而空氣密度最低,定為-1000Hu。人體中密度不同和各種組織的CT值則居於-1000Hu到+1000Hu的2000個分度之間
由右上圖可見人體軟組織的CT值多與水相近,但由於CT有高的密度分辨力,所以密度差別雖小,也可形成對比而顯影。
CT值的使用,使在描述某一組織影像的密度時,不僅可用高密度或低密度形容,且可用它們的CT值平說明密度高低的程度。
CT圖像是層面圖像,常用的是橫斷面。為了顯示整個器官,需要多個連續的層面圖像。通過CT設備上圖像的重建程序的使用,還可重建冠狀面和矢狀面的層面圖像。

6、簡述X射線照射固體物質時,可能發生的各種相互作用。

一)物理效應 1.穿透作用 穿透作用是指X射線通過物質時不被吸收的能力。X射線能穿透一般可見光所不能透過的物質。可見光因其波長較長,光子其有的能量很小,當射到物體上時,一部分被反射,大部分為物質所吸收,不能透過物體;而X射線則不然,咽其波長短,能量大,照在物質上時,僅一部分被物質所吸收,大部分經由原子間隙而透過,表現出很強的穿透能力。X射線穿透物質的能力與X射線光子的能量有關,X射線的波長越短,光子的能量越大,穿透力越強。X射線的穿透力也與物質密度有關,密度大的物質,對X射線的吸收多,透過少;密度小者,吸收少,透過多。利用差別吸收這種性質可以把密度不同的骨骼、肌肉、脂肪等軟組織區分開來。這正是X射線透視和攝影的物理基礎。 2.電離作用 物質受X射線照射時,使核外電子脫離原子軌道,這種作用叫電離作用。在光電效應和散射過程中,出現光電子和反沖電子脫離其原子的過程叫一次電離,這些光電子或反沖電子在行進中又和其它原子碰撞,使被擊原子逸出電子叫二次電離。在固體和液體中。電離後的正、負離子將很快復合,不易收集。但在氣體中的忘離電荷卻很容易收集起來,利用電離電荷的多少可測定X射線的照射量:X射線測量儀器正是根據這個原理製成的。由於電離作用,使氣體能夠導電;某些物質可以發生化學反應;在有機體內可以誘發各種生物效應。電離作用是X射線損傷和治療的基礎。 3.熒光作用 由於X射線波長很短,因此是不可見的。但它照射到某些化合物如磷、鉑氰化鋇、硫化鋅鎘、鎢酸鈣等時,由於電離或激發使原子處於激發狀態,原子回到基態過程中,由於價電子的能級躍遷而輻射出可見光或紫外線,這就是熒光。X射線使物質發生熒光的作用叫熒光作用。熒光強弱與X射線量成正比。這種作用是X射線應用於透視的基礎。在X射線診斷工作中利用這種熒光作用可製成熒光屏,增感屏,影像增強器中的輸入屏等。熒光屏用作透視時觀察X射線通過人體組織的影像,增感屏用作攝影時增強膠片的感光量。 4.熱作用物質所吸收的X射線能,大部分被轉變成熱能,使物體溫度升高,這就是熱作用。 5.干涉、衍射、反射、折射作用這些作用與可見光一樣。在X射線顯微鏡、波長測定和物質結構分析中都得到應用。 二)化學效應 1.感光作用 同可見光一樣,X射線能使膠片感光。當X射線照射到膠片上的溴化銀時,能使銀粒子.沉澱而使膠片產生「感光作用」。膠片感光的強弱與X射線量成正比。當X射線通過人體時,囡人體各組織的密度不同,對X射線量的吸收不同,致綻膠片上所獲得的感光度不同,從而獲得X射線的影像。這就是應用X射線作攝片檢查的基礎。 2.著色作用 某些物質如鉑氰化鋇、鉛玻璃、水晶等,經X射線長期照射後,其結晶體脫水而改變顏色,這就叫做著色作用。 (三)生物效應』 當X射線照射到生物機體時,生物細胞受到抑制、破壞甚至壞死,致使機體發生不同程度的生理、病理和生化等方面的改變,稱為X射線的生物效應。不同的生物細胞,對X射線有不同的敏感度。楓X射線可以治療人體的某些疾病,如腫瘤等。另一方面,它對正常機體也有傷害,因此要嘞人體的防護。X射線的生物效應『臼根結底是由X射線的電離作用造成的。 由於X射線具有如上種餓!因而在工業、農業、科學研究等客_爪領域,獲得了廣泛 的應用,如工業探傷,晶體分析等。在醫學上,X射線技術已成為對疾病進行診斷和治療的專門學科,在醫療衛生事業中佔有重要地位。 (一)X射線診斷 X射線應用於醫學診斷,主要依據X射線的穿透作用、差別吸收、感光作用和熒光作用。由於X射線穿過人體時,受到不同程度的吸收,如骨骼吸收的X射線量比肌肉吸收的量要多,那麼通過人體後的X射線量就不一樣,這樣便攜帶了人體各部密度分布的信息,在熒光屏上或攝影膠片上引起的熒光作用或感光作用的強弱就有較大差別,因而在熒光屏上或攝影膠片上(經過顯影、定影)將顯示出不同密度的陰影。根據陰影濃淡的對比,結合臨床 表現、化驗結果和病理診斷,即可判斷人體某一部分是否正常。於是,X射線診斷技術便成了世界上最早應用的非刨傷性的內臟檢查技術。 (二)X射線治療 X射線應用於治療,主要依據其生物效應,應用不同能量的X射線對人體病灶部分的細胞組織進行照射時,即可使被照射的細胞組織受到破壞或抑制,從而達到對某些疾病,特別是腫瘤的治療目的。 (三)X射線防護 在利用X射線的同時,人們發現了導致病人脫發、皮膚燒傷、工作人員視力障礙,白血病等射線傷害的問題,為防止X射線對人體的傷害,必須採取相應的防護措施。以上構成了X射線應用於醫學方面的三大環節——診斷、治療和防護。 參考資料: http://www.instrument.com.cn/bbs/shtml/20060624/466702/

7、肌肉和脂肪誰吸收x射線的能力強

肌肉的密度比脂肪高,所以肌肉吸收X線比脂肪多。在軟組織X線片里可以看到比較黑的部分是脂肪組織,因為脂肪吸收X線少的緣故。CT片里的CT值(也稱H值),脂肪的CT值是-20~-80H,肌肉的CT值是40~80H,說明肌肉吸收X線高於脂肪組織。

8、ct的高密度影低密度影

以正常組織的密度為標准,異常密度可分為以下幾種:

1、高密度:病灶的密度高於正常組織的密度稱高密度,常見於鈣化、出血、實體腫塊等;

2、低密度:病灶的密度低於正常組織的密度稱低密度,常見於腦梗死、水腫、脂肪、液化、壞死等;

3、等密度:病灶的密度與正常組織密度相同或相似稱等密度。常見於血腫吸收期、腫瘤、炎性腫塊等;

4、混雜密度:病灶內並存高、低等多種密度病變稱為混雜密度。常見於惡性腫瘤、腦出血吸收過程等。

(8)x線在脂肪和液體和軟組織透過率擴展資料:

原理:

當強度均勻的X線穿透厚度相等的不同密度組織結構時,由於吸收程度不同,因此將出現。在X線片上或熒屏上顯出具有黑白(或明暗)對比、層次差異的X線影像。

在人體結構中,胸部的肋骨密度高,對X線吸收多,照片上呈白影;肺部含氣體密度低,X線吸收少,照片上呈黑影。就是低密度影。

X線穿透低密度組織時,被吸收少,剩餘X線多,使X線膠片感光多,經光化學反應還原的金屬銀也多,故X線膠片呈黑影;使熒光屏所生熒光多,故熒光屏上也就明亮。高密度組織則恰相反

人體組織結構和器官形態不同,厚度也不一致。其厚與薄的部分,或分界明確,或逐漸移行。厚的部分,吸收X線多,透過的X線少,薄的部分則相反,因此,X線投影可有不同表現。

與x線在脂肪和液體和軟組織透過率相關的內容